Introspection in Deep Generative Models of Sparse Data
نویسندگان
چکیده
Deep generative models such as deep latent Gaussian models (DLGMs) are powerful and popular density estimators. However, they have been applied almost exclusively to dense data such as images; DLGMs are rarely applied to sparse, high-dimensional integer data such as word counts or product ratings. One reason is that the standard training procedures find poor local optima when applied to such data. We propose two techniques that alleviate this problem, significantly improving our ability to fit DLGMs to sparse, high-dimensional data. Having fit these models, we are faced with another challenge: how to use and interpret the representation that we have learned? To that end, we propose a method that extracts distributed representations of features via a simple linearization of the model.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملDeep Regression Bayesian Network and Its Applications
Deep directed generative models have attracted much attention recently due to their generative modeling nature and powerful data representation ability. In this paper, we review different structures of deep directed generative models and the learning and inference algorithms associated with the structures. We focus on a specific structure that consists of layers of Bayesian Networks due to the ...
متن کاملSemi-supervised Learning with Deep Generative Models for Asset Failure Prediction
This work presents a novel semi-supervised learning approach for data-driven modeling of asset failures when health status is only partially known in historical data. We combine a generative model parameterized by deep neural networks with non-linear embedding technique. It allows us to build prognostic models with the limited amount of health status information for the precise prediction of fu...
متن کاملIntrospective Generative Modeling: Decide Discriminatively
We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being able to self-evaluate the difference between its generated samples and the given training data. When followed by repeated discriminative learning, des...
متن کاملOn the challenges of learning with inference networks on sparse, high-dimensional data
We study parameter estimation in Nonlinear Factor Analysis (NFA) where the generative model is parameterized by a deep neural network. Recent work has focused on learning such models using inference (or recognition) networks; we identify a crucial problem when modeling large, sparse, highdimensional datasets – underfitting. We study the extent of underfitting, highlighting that its severity inc...
متن کامل